David, Oui, MapReduce est destiné à fonctionner sur une grande quantité de données. Et l'idée est qu'en général, les fonctions de carte et de réduction ne devraient pas prendre en compte le nombre de cartographes ou le nombre de réducteurs qu'il ya, ce qui correspond à l'optimisation. Si vous pensez soigneusement à l'algorithme que j'ai posté, vous pouvez voir qu'il n'a pas d'importance quel mappeur obtient ce que les portions des données. Chaque enregistrement d'entrée sera disponible pour chaque opération de réduction qui en a besoin. Ndash Joe K Sep 18 12 at 22:30 Au mieux de ma compréhension de la moyenne mobile n'est pas bien des cartes au paradigme MapReduce car son calcul est essentiellement glisser la fenêtre sur les données triées, tandis que MR est le traitement des plages non intersectées de données triées. La solution que je vois est la suivante: a) Pour implémenter un partitionneur personnalisé pour pouvoir faire deux partitions différentes en deux exécutions. Dans chaque course, vos réducteurs obtiendront des gammes de données différentes et calculeront la moyenne mobile si cela est approprié. J'essaierai d'illustrer ceci: Dans la première exécution, les données pour les réducteurs devraient être: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . Ici vous allez cacluate moyenne mobile pour certains Qs. Dans la prochaine exécution vos réducteurs devraient obtenir des données comme: R1: Q1. Q6 R2: Q6. Q10 R3: Q10..Q14 Et cacluler le reste des moyennes mobiles. Ensuite, vous aurez besoin d'agréger les résultats. Idée de partitionneur personnalisé qu'il aura deux modes de fonctionnement - chaque fois se divisant en gammes égales, mais avec un certain décalage. Dans un pseudocode, il ressemblera à ceci. Partition (keySHIFT) (MAXKEYnumOfPartitions) où: SHIFT sera extrait de la configuration. MAXKEY valeur maximale de la clé. Je suppose pour la simplicité qu'ils commencent par zéro. RecordReader, IMHO n'est pas une solution puisqu'elle est limitée à la division spécifique et ne peut pas glisser sur la frontière splits. Une autre solution consisterait à implémenter une logique personnalisée de fractionnement des données d'entrée (il fait partie de InputFormat). Il peut être fait pour faire 2 diapositives différentes, semblable au partitionnement. Les moyennes mobiles: Quels sont-ils Parmi les indicateurs techniques les plus populaires, les moyennes mobiles sont utilisées pour évaluer l'orientation de la tendance actuelle. Chaque type de moyenne mobile (généralement écrit dans ce tutoriel comme MA) est un résultat mathématique qui est calculé en faisant la moyenne d'un certain nombre de points de données passés. Une fois déterminée, la moyenne résultante est ensuite tracée sur un graphique afin de permettre aux commerçants d'examiner les données lissées plutôt que de se concentrer sur les fluctuations de prix au jour le jour qui sont inhérentes à tous les marchés financiers. La forme la plus simple d'une moyenne mobile, connue sous le nom de moyenne mobile simple (SMA), est calculée en prenant la moyenne arithmétique d'un ensemble donné de valeurs. Par exemple, pour calculer une moyenne mobile de base de 10 jours, vous additionnez les prix de clôture des 10 derniers jours, puis divisez le résultat par 10. Dans la figure 1, la somme des prix pour les 10 derniers jours (110) est Divisé par le nombre de jours (10) pour arriver à la moyenne sur 10 jours. Si un commerçant souhaite voir une moyenne de 50 jours à la place, le même type de calcul serait fait, mais il inclurait les prix au cours des 50 derniers jours. La moyenne résultante ci-dessous (11) prend en compte les 10 derniers points de données afin de donner aux commerçants une idée de la façon dont un actif est évalué par rapport aux 10 derniers jours. Peut-être vous vous demandez pourquoi les traders techniques appellent cet outil une moyenne mobile et pas seulement un moyen régulier. La réponse est que lorsque de nouvelles valeurs deviennent disponibles, les points de données les plus anciens doivent être supprimés de l'ensemble et de nouveaux points de données doivent venir les remplacer. Ainsi, l'ensemble de données se déplace constamment pour tenir compte des nouvelles données à mesure qu'elles deviennent disponibles. Cette méthode de calcul garantit que seules les informations actuelles sont comptabilisées. Dans la figure 2, une fois que la nouvelle valeur de 5 est ajoutée à l'ensemble, la case rouge (représentant les 10 derniers points de données) se déplace vers la droite et la dernière valeur de 15 est supprimée du calcul. Étant donné que la valeur relativement petite de 5 remplace la valeur élevée de 15, on s'attend à ce que la moyenne de l'ensemble de données diminue, ce qui fait, dans ce cas, de 11 à 10. Qu'est-ce que les moyennes mobiles ressemblent Une fois que les valeurs de la MA ont été calculés, ils sont tracés sur un graphique et ensuite connectés pour créer une ligne de moyenne mobile. Ces lignes courbes sont communes sur les tableaux des commerçants techniques, mais la façon dont ils sont utilisés peut varier de façon drastique (plus sur cela plus tard). Comme vous pouvez le voir sur la figure 3, il est possible d'ajouter plus d'une moyenne mobile à n'importe quel graphique en ajustant le nombre de périodes de temps utilisées dans le calcul. Ces lignes courbes peuvent sembler distrayant ou confus au début, mais vous vous habituerez à eux comme le temps passe. La ligne rouge est simplement le prix moyen au cours des 50 derniers jours, alors que la ligne bleue est le prix moyen au cours des 100 derniers jours. Maintenant que vous comprenez ce qu'est une moyenne mobile et à quoi il ressemble, bien introduire un autre type de moyenne mobile et d'examiner comment il diffère de la moyenne mobile simple mentionné précédemment. La moyenne mobile simple est extrêmement populaire parmi les commerçants, mais comme tous les indicateurs techniques, il a ses critiques. Beaucoup d'individus soutiennent que l'utilité du SMA est limitée parce que chaque point dans la série de données est pondéré le même, peu importe où il se produit dans la séquence. Les critiques soutiennent que les données les plus récentes sont plus importantes que les données plus anciennes et devraient avoir une plus grande influence sur le résultat final. En réponse à cette critique, les commerçants ont commencé à donner plus de poids aux données récentes, ce qui a conduit depuis à l'invention de différents types de nouvelles moyennes, dont la plus populaire est la moyenne mobile exponentielle (EMA). Moyenne mobile exponentielle La moyenne mobile exponentielle est un type de moyenne mobile qui donne plus de poids aux prix récents dans une tentative de le rendre plus réactif (par exemple, À de nouvelles informations. Apprendre l'équation quelque peu compliquée pour calculer un EMA peut être inutile pour de nombreux commerçants, puisque presque tous les paquets de cartographie faire les calculs pour vous. Toutefois, pour vous mathématiciens geeks là-bas, voici l'équation EMA: Lorsque vous utilisez la formule pour calculer le premier point de l'EMA, vous pouvez remarquer qu'il n'y a aucune valeur disponible pour utiliser comme l'EMA précédente. Ce petit problème peut être résolu en commençant le calcul avec une moyenne mobile simple et en poursuivant avec la formule ci-dessus à partir de là. Nous vous avons fourni un exemple de feuille de calcul qui comprend des exemples réels de calcul d'une moyenne mobile simple et d'une moyenne mobile exponentielle. La différence entre l'EMA et SMA Maintenant que vous avez une meilleure compréhension de la façon dont la SMA et l'EMA sont calculés, permet de jeter un oeil à la façon dont ces moyennes diffèrent. En regardant le calcul de l'EMA, vous remarquerez que plus l'accent est mis sur les points de données récentes, ce qui en fait un type de moyenne pondérée. À la figure 5, le nombre de périodes utilisées dans chaque moyenne est identique (15), mais l'EMA répond plus rapidement à l'évolution des prix. Remarquez comment l'EMA a une valeur plus élevée lorsque le prix est en hausse, et tombe plus vite que la SMA lorsque le prix est en baisse. Cette réactivité est la principale raison pour laquelle de nombreux commerçants préfèrent utiliser l'EMA sur le SMA. Que signifient les différents jours Moyennes mobiles sont un indicateur totalement personnalisable, ce qui signifie que l'utilisateur peut librement choisir le temps qu'ils veulent lors de la création de la moyenne. Les périodes les plus courantes utilisées pour les moyennes mobiles sont 15, 20, 30, 50, 100 et 200 jours. Plus le délai de création de la moyenne est court, plus il sera sensible aux variations de prix. Plus la durée est longue, moins sensible, ou plus lissée, la moyenne sera. Il n'y a pas de période correcte à utiliser lors de la configuration de vos moyennes mobiles. La meilleure façon de déterminer qui fonctionne le mieux pour vous est d'expérimenter avec un certain nombre de périodes de temps différentes jusqu'à ce que vous en trouver un qui correspond à votre stratégie. Moyennes mobiles: Comment les utiliser Quelle est la différence entre une moyenne mobile simple et une moyenne mobile exponentielle La seule différence entre ces deux types de moyenne mobile est la sensibilité de chacun à des changements dans les données utilisées dans son calcul. Plus précisément, la moyenne mobile exponentielle (EMA) donne une pondération plus élevée aux prix récents que la moyenne mobile simple (SMA), tandis que la SMA attribue une pondération égale à toutes les valeurs. Les deux moyennes sont similaires parce qu'elles sont interprétées de la même manière et sont utilisées couramment par les commerçants techniques pour lisser les fluctuations de prix. Le SMA est le type le plus courant de moyenne utilisé par les analystes techniques et il est calculé en divisant la somme d'un ensemble de prix par le nombre total de prix trouvé dans la série. Par exemple, une moyenne mobile de sept périodes peut être calculée en additionnant les sept prix suivants ensemble, puis en divisant le résultat par sept (le résultat est également connu sous le nom de moyenne arithmétique moyenne). Exemple Étant donné les séries suivantes de prix: 10, 11, 12, 16, 17, 19, 20 Le calcul de la SMA ressemblerait à ceci: 10111216171920 105 SMA 1057 de 7 périodes 15 Puisque les EMA placent une pondération plus élevée sur les données récentes que sur les données plus anciennes , Ils sont plus réactifs aux derniers changements de prix que les SMA, ce qui rend les résultats des EMA plus opportuns et explique pourquoi l'EMA est la moyenne préférée parmi de nombreux commerçants. Comme vous pouvez le voir sur le graphique ci-dessous, les commerçants ayant une perspective à court terme ne se soucient peut-être pas de la moyenne utilisée, puisque la différence entre les deux moyennes est habituellement une question de cents. D'autre part, les opérateurs à plus long terme devraient accorder plus d'importance à la moyenne qu'ils utilisent parce que les valeurs peuvent varier de quelques dollars, ce qui est assez d'une différence de prix pour finalement s'avérer influent sur les rendements réalisés - surtout lorsque vous êtes Le commerce d'une grande quantité de stock. Comme avec tous les indicateurs techniques. Il n'ya pas un type de moyenne qu'un commerçant peut utiliser pour garantir le succès, mais en utilisant l'essai et l'erreur, vous pouvez sans aucun doute améliorer votre niveau de confort avec tous les types d'indicateurs et, par conséquent, augmenter vos chances de prendre de bonnes décisions commerciales. Pour en savoir plus sur les moyennes mobiles, consultez la rubrique Bases des moyennes mobiles et principes de base des moyennes mobiles pondérées.
No comments:
Post a Comment